1、【题目】设 A,B 为随机事件,若 0
选项:
答案:
A
解析:
暂无解析
1、【题目】某公司的员工中,拥有本科毕业证、计算机登记证、汽车驾驶证得人数分别为130,90.又知只有一种证的人数为140,三证齐全的人数为30,则恰有双证得人数为()
选项:
A.45
B.50
C.52
D.65
E.100
答案:
B
解析:
暂无解析
1、【题目】某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮换到4个部门的其他()
选项:
A.3种
B.6种
C.8种
D.9种
E.10种
答案:
解析:
1、【题目】某公司投资一个项目,已知上半年完成预算的三分之一,下半年完成了剩余部分的8千万投资未完成,则该项目的预算为()
选项:
A.3亿元
B.3.6亿元
C.3.9亿元
D.4.5亿元
E.5.1亿元
答案:
B
解析:
设该项目预算为X亿元。8千万=0.8亿
上半年完成(1/3)X元。
下半年完成剩余部分(即2/3)的三分之二,即(2/3)*(2/3)X元。
由题意立方程:X-(1/3)X-(2/3)(2/3)X=0.8
解方程X=3.6
所以答案为B
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
解析:
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
解析:
1、【题目】甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()。
选项:
答案:
解析:
1、【题目】如图1,已知AE=3AB,BF=2BC,若三角形ABC的面积为2,则三角形AEF的面积为()
选项:
A.14
B.12
C.10
D.8
E.6
答案:
解析:
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
A
解析:
做辅助线FG⊥CD,垂足为G,链接AG
由题意可知,FG∥CC,DG=?DC=1,AD=2,有勾股定理得AG=√5,AF=√(FG?+AG?)=3
所以答案选A
1、【题目】设A,B为随机事件,若0
选项:
答案:
解析:
1、【题目】甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇,最后速度均1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇,则A,B两()
选项:
A.5.6公里
B.7公里
C.8公里
D.9公里
E.9.5公里
答案:
解析:
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
C
解析:
分类讨论题目。投掷出正面的概率为(1/2),投掷出反面的概率为(1/2)。
若投掷第一次正面向上停止,概率为(1/2),
投掷两次,一次反面一次正面,概率相等,不考虑。
若投掷三次,则第一次定为反面,后两次为正面,概率=(1/2)*(1/2)*(1/2)=1/8
每种情况的概率相加1/2+1/8=5/8
所以答案选C